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Abstract

Genome rearrangement analysis has attracted a lot of attentions in phylogenetic com-

putation and comparative genomics. Solving the median problems based on various

distance definitions has been a focus as it provides the building blocks for maximum

parsimony analysis of phylogeny and ancestral genomes. The Median Problem (MP)

has been proved to be NP-hard and although there are several exact or heuristic al-

gorithms available, these methods all are difficulty to compute distant three genomes

containing high evolution events. Such as current approaches, MGR[1] and GRAPPA

[2], are restricted on small collections of genomes and low-resolution gene order data

of a few hundred rearrangement events. In my work, we focus on heuristic algorithms

which will combine genomic sorting algorithm with genetic algorithm (GA) to pro-

duce new methods and directions for whole-genome median solver, ancestor inference

and phylogeny reconstruction.

In equal median problem, we propose a DCJ sorting operation based genetic

algorithms measurements, called GA-DCJ. Following classic genetic algorithm frame,

we develop our algorithms for every procedure and substitute for each traditional

genetic algorithm procedure. The final results of our GA-based algorithm are optimal

median genome(s) and its median score. In limited time and space, especially in large

scale and distant datasets, our algorithm get better results compared with GRAPPA

and AsMedian.

Extending the ideas of equal genome median solver, we develop another genetic

algorithm based solver, GaDCJ-Indel, which can solve unequal genomes median prob-

lem (without duplication). In DCJ-Indel model, one of the key steps is still sorting
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operation[3]. The difference with equal genomes median is there are two sorting di-

rections: minimal DCJ operation path or minimal indel operation path. Following

different sorting path, in each step scenario, we can get various genome structures

to fulfill our population pool. Besides that, we adopt adaptive surcharge-triangle

inequality instead of classic triangle inequality in our fitness function in order to fit

unequal genome restrictions and get more efficient results. Our experiments results

show that GaDCJ-Indel method not only can converge to accurate median score, but

also can infer ancestors that are very close to the true ancestors.

An important application of genome rearrangement analysis is to infer ancestral

genomes, which is valuable for identifying patterns of evolution and for modeling the

evolutionary processes. However, computing ancestral genomes is very difficult and

we have to rely on heuristic methods that have various limitations. We propose a

GA-Tree algorithm which adapts meta-population [4], co-evolution and repopulation

pool methods In this paper, we describe and illuminate the first genetic algorithm

for ancestor inference step by step, which uses fitness scores designed to consider co-

evolution and uses sorting-based methods to initialize and evolve populations. Our

extensive experiments show that compared with other existing tools, our method is

accurate and can infer ancestors that are much closer to true ancestors.
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Chapter 1

Introduction

1.1 Background

Gene Sequence Data

There are variety of data types used in phylogenetic inference problem. The data are

typically represented in the form of matrix and each row represents taxa and each

column represents the individual characters. Early phylogeneticists primarily used

morphological characters which stand for the physical attributes of the organisms. In

theory, inference can be described as any characters that are inherited and are able

to change over time. Biological sequence data is used mostly in modern phylogenetic

inference field, such as DNA, RNA or protein sequences [5, 6] representing the same

gene in different of organisms. Sequence data are composed of a series of characters

which are referred to as bases or nucleotides in the case of DNA (A, C, G and T) and

RNA (A, C, G and U) sequence, and amino acids such as the protein sequence (A,

C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y)[7]. The reason for using

for sequence data is primarily due to the ease to process and build model: with the

process of sequence evolution many characters can be easily gathered and used in the

tractability of statistically modeling .

Gene order and genome rearrangements with gene order

Based on the ordering and strand of genes on a chromosome, biologist may represent

each chromosome by an ordering of signed genes. In 1936, Dobzhansky and Sturtevant
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gave the first paper in which they used the degrees of disorder between the segments

of genes in two genomes to measure the distances between different organisms [8, 9].

A genome is the collection of genes in the order in which they are placed along one

or more chromosomes, so gene-order data enables the reconstruction of evolutionary

events far back in time [10, 11].

A genome can be represented by a ordering (circular or linear) set of n genes

{g1, g2, · · · , gn}. Each gene is assigned with an orientation that is either gi as positive

or −gi as negative. The adjacent is defined as an ordered pairs of (gi, gj) or ( −gj,

−gi), which means gi and gj appear consecutively in one genome.

Suppose a genome (G) with liner ordering

g1, g2, ..., gi−1, gi, gi+1, ..., gj−1, gj, gj+1, ..., gn

an inversion between gi and gj, which i ≤ j, generates the genome with liner ordering

g1, g2, ..., gi−1, −gj, −gj−1, ..., −gi, gj+1, ..., gn

A transposition on this linear ordering genome G has an influence on three points:

i,j and k, where i ≤ j and k[i , j], inserting the interval ordering segment gi, gi+1, ...

,gj immediately after gk. It produces the genome

g1, g2, ..., gi−1, gj+1, ..., gk, gi, gi+1, ..., gj, gk+1, ..., gn

An inverted transposition is simply defined as a transposition followed by an inversion,

also called a transversion.

Distance Computation Measurements

We use distance [12, 13] to describe the degree of disorders between two genomes (G1

and G2). The distance is defined as the minimum number of evolution events required

to transform one gene order into the other. Based on different domestic events, there

are several distance measurements.

2
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Figure 1.1 Genome Rearrangements Examples

• The Breakpoint Distance[14]. The breakpoint distance presents the minimum

total number of breakpoints (adjacencies present in one genome but absent in

the other) between two genomes.

• The Inversion Distance [15]. The inversion distance (inversions are the most

documented hypothesized mechanisms of evolution events) measures the min-

imal inversions needed to transform one genome into the other. Based on the

breakpoint graph, HP algorithm determines how to calculate inversion distance

(Fig 1.1). Hannenhalli and Pevzner [16] proved that the inversion distance

between two signed permutations of n genes is given by:

n − #cycles + #hurdles + (1 ifnotpresent; 0 otherwise) (1.1)

Moret et al. implement a tool called GRAPPA which can give both break-

points and inversion distances. Later, MGR, proposed by Bourque and Pevzner,

based on GRAPPAs distance computation parts, focuses on multi-chromosomal

genomes.

• Double-Cut and Join Distance. Yancopoulos et al. [58] proposed an universal

double-cut-and-join (DCJ) operation. A double-cut-and-join (DCJ) operation

3



www.manaraa.com

occurs when two breaks are appeared in the chromosomes of a genome and the

cut fresh telomeres are reconnected to form a new single adjacency.

DCJ subsumes all other rearrangement events such as inversions, translocations,

fissions and fusions. We use an adjacency graph to determine the DCJ distance

between two genomes. Figure 1.1 shows an example of a DCJ adjacency graph.

Genome A and genome B are supposed to have equal gene orders. In the graph, we

use a vertex to stand for every adjacency and telomere in A, and repeat the same

process for B. For each gene terminal, we draw an edge connecting the two vertices

which contain the same terminal in A and B. After that, telomere vertices have a

degree of one and adjacencies have a degree of two, so the graph is composed of paths

and cycles. A DCJ event can modify at most two adjacencies or telomeres, so the

potential results of a single event are separating one cycle into two, removing a cycle

from an existing path, connecting the ends of a path of even length to form a cycle,

or splitting a path of even length into two paths of odd length.

Recently DCJ operation attracts lots of attentions because its ease of computation

and less chromosome structure constraints, so it provides a simpler and unifying model

for genome rearrangement.

{1  }

h
{3   }

t     t
{3,  1  }

h     t
{1,  4  }

h     h
{4,  2  }

t     h
{2,  5  }

t
{5  }

t
{5  }

t     h
{4,  5  }

t     h
{3,  4  }

t     h
{2,  3  }

t     h
{1,  2  }

h

Figure 1.2 Adjacency graph and DCJ distance of two genomes
G1 = (3, −1, −4, 2, 5) and G2 = (1, 2, 3, 4, 5). The number of cycles C is 1, the
number of paths I is 2, the DCJ distance is N − (C + I/2) = 3.
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Phylogeny Reconstruction and Median Problem

In 1982, the quantitative analysis of gene order data was first addressed with the

introduction of the chromosome inversion problem [?]. Phylogenetic focuses on

the study of evolutionary relationships among groups of organisms (e.g. species,

populations)[17, 18] based upon similarities and differences in their physical and/or

genetic characteristics [19, 20, 21].A phylogenetic tree or evolutionary tree is often

described as a binary tree. Its leaves are the given set of descendants organisms and

internal nodes stand for extinct ancestors connected by different lengths of edges.

Gene-order data has the ability to study the whole-genome, so it is a good solution

to resolve the well-known gene tree vs. species tree problem [22, 23, 24].

The methods of phylogenetic reconstruction of gene-order data, currently, have

two main directions [25]: one is Distance-based methods and the other is Parsimony-

based methods [26, 27].

One of effective Distance-based algorithms for generating phylogenetic trees is

called Neighbor Joining [28]. The brief idea of NJ is: constructing a matrix con-

taining the evolutionary distance between each pair of a given set of genomes; then

iteratively combining the best pair of candidate leaves into a single distance matrix

row and column as a new node which represents an internal node in the phyloge-

netic tree connected with the best pair. After that the rest of the distance matrix is

modified with respective to the new node. The original purpose for Neighbor Joining

was developed with sequence based distances, but it is completely compatible and

commonly used with gene order in earlier years.

Maximum parsimony is another strategy for generating phylogenetic trees specific

to gene order and content data. The method assumes that most gene order evolu-

tionary events are very unlikely and the tree that uses the fewest number of events

to evolve from ancestors to descendants is most likely to be the true evolutionary

tree with true tree topology. A lot of maximum parsimony algorithms have been

5



www.manaraa.com

developed and implemented using different distance measurements such as inversion,

DCJ, and others [The abcs of mgr with dcj]. The common solution idea of these

methods is based on solving the median of three problem which is defined as given

three genomes (connected or not), finding the medial genome which can minimize

the distance between itself and the other three genomes. The goal of parsimony

method is to minimize the total number of evolutionary operations between ancestor

and descendant along a phylogenetic tree. The median problem is the critical part in

ancestor genome finding and phylogenetic reconstruction problem.

We assume without loss of generality there are four genomes G1, G2, G3 and

genome Gm. The median problem on three genomes is to find Gm that minimizes the

median score

d(G1 , Gm) + d(G2 , Gm) + d(G3 , Gm) (1.2)

Based on the triangle inequality, we can get the prefect median score is

⌈d(G1, G2) + d(G1, G3) + d(G2, G3)
2

⌉ (1.3)

which is used as the lower bound for a median problem. However, solving even the

simplest case of median problem when the number of genomes is three is NP-hard

for most distance measurements [29, 30, 31].

Our research topic follows the parsimony-based methods not only because the cur-

rently accurate and efficient tools, such as GRAPPA, MGR[1] are in this area. MGR

solves the median problem by applying "good" events to the three initial genomes,

one at a time in round robin order. After repeating doing that procedure, a sin-

gle "prefect" genome (the median genome ) is generated. GRAPPA [32], by using

a bounded exhaustive search, compares different tree scores with multiple medians

spanning trees until it converges into a stable tree structure and that is the "perfect"

evolutionary tree. All of these methods can adopted with different distance methods,

such as inversal and DCJ distance.

6
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There are several exact solutions to solve median problem classified by differ-

ent distance measurements (inversion, breakpoint and DCJ distances) [33, 34, 35].

Among them, the best one is the DCJ median solver proposed by Xu and Sankoff

[35]. The adjacency graph method is used by Xu in AsMedian to solve DCJ distance.

It can be expanded from two to three genomes, so it provides a large amount of

valuable information about the potential optimal structures for the median genome.

Though the ASMedian solver could outstandingly reduce the computational costs of

median searching, it yet runs very slow when the genomes are distant, exhausts large

amount of spaces and even looses some accuracy. Meanwhile, there are some heuris-

tic methods such as GASTS and SCJ. Although they have the ability to fast solve

median problem with high-resolution genomes in a relative stable amount of storage

spaces, the accuracy is still not so good with distance increasing. Besides that, the

distance measurements they used are not so universal (inversion and break point-like

SCJ distance).

Genetic Algorithm

Genetic algorithms, or GAs, are based upon evolutionary principles of natural selec-

tion, mutation, and survival of the fittest (Dulay, 2005) [36]. A genetic algorithm

maintains amount of population which consists of a set of potential solutions and

after some generation evolve one or several fittest solution(s).

In general, GA will go through four steps: initial pool, crossover, mutation and get

result(s) [37]. If the last three operations stay constant all over the period of the algo-

rithm, a genetic algorithm is the simple one. Crossover procedure helps exchange the

genetic information of creatures and living organisms. Mutation procedure randomly

change the creatures’ genetic information. Fitness selection reproductive off-spring

of adapted creatures and pass their good genetic information in their environment.

A good fitness function is one of the critical keys to a successful genetic algorithm.

7
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We use it to evaluate potential solutions and it usually decides the evolution direction.

When developing a genetic algorithm, firstly, we should consider what the format is for

real solution and how each solution can be represented in the algorithm. The simplest

one is a string of bits. To initial population of potential solutions, we could use random

methods (usually can not get good results) or algorithms in some specify fields. Each

member of the population is evaluated and recorded using predefined fitness function.

Crossover and mutation are two important steps to generate new generation and pass

good hereditary material to the next generation. The two procedures repeat till the

algorithm reaches some stopping criteria, such as the best fitness score reaches the

predefined value or a certain number of generations have been produced.

A number of researchers have investigated non-binary genetic algorithms theo-

retically and some of them have been successfully used in applications [37]. Bhat-

tacharyya and Koehler [38] and Leung et al. [39] first addressed non-binary genetic

algorithms with cardinality 2v. The non-binary model has different crossover and mu-

tation operators with normal binary model which fits the definition of a generalized

binary string operation. So in our genetic algorithm, for particular data format and

event constrain rules, we use non-binary genetic algorithm operations which can re-

flect specific evolutionary events. However, it will need us to find and embed suitable

operations to substitute simple genetic algorithm procedures.

In 1996, Matsuda presents the first GA method to solve the phylogeny inference

problem. The ability of GAs to find near-optimal solutions quickly in the face of

complex data makes them ideal candidates for the problem of phylogenetic infer-

ence, especially when many taxa are included or complicated evolutionary models

are applied [40]. Later PHYML (Guindon and Gasquel, 2003) [41] and RAxML

(Stamatakis et. al, 2005) [?, 42] have been developed. Both programs implement en-

hancements those reduce the burden of branch-length optimization in the evaluation

of new topologies, especially in distant data sets. In 2006, Zwickl developed GARLI

8
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(Genetic Algorithm for Rapid Likelihood Inference)[43] which allows ML phylogenetic

searches to be performed on datasets consisting of thousands of sequences [44]. Using

GA to solve phylogenetic reconstruction with sequence data has been studied for a

long time [45]. However, GA with gene order data has not been touched yet. In this

proposal, we first explore this field and make some steps forward in some research

directions.

Co-evolution

McKelvey (1997) has discussed that evolution of organizations cannot be understood

independently from the simultaneous evolution of the environment. He addressed a

co-evolutionary perspective to study organization adaptation. The co-evolutionary

paradigm can be broadly classified into two main categories which are competitive

co-evolution and cooperative co-evolution respecting to the relationship among sub-

populations in that ecology system. All of the two types of evolutionary approaches

need to consider several design issues such as problem decomposition, subpopulation

size, parameter interactions and so on. In our algorithm, each internal node gives

its own contributions in the whole species evolutionary history, so we only consider

cooperative co-evolution, in which each subpopulation collaborate to solve the whole

problem and exchange information within each other during the evolutionary process.

1.2 Research Contribution

The research presented in this work contributes to using genetic algorithm to solve

median problem and phylogeny reconstruction in three major ways:

1. Development of an equal genomes median solver: GaDCJ. We developed a Ge-

netic algorithm median solver using DCJ distance measurement. Our GA-based

method uses genomic sorting to generate initial population and find offspring

9
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by crossover and mutation procedures. Using GA, we have the ability to extend

optimal median solution space with limited space and time, so it is not easy to

stack at local optimal, even when the three genomes are very distant.

2. Development of an unequal genomes median solver: GaDCJ-Indel. Following

the four steps of classic genetic algorithm, we propose the first genetic algorithm

based median solver with unequal content genomes, but without duplications,

taking into consideration of DCJ and indel operations with different event ratios.

Our GaDCJ-Indel algorithm not only can efficiently give accurate results from

small distance to large distance datasets, but also needs relative stable small

memory spaces which is the shortcoming for most of current equal genome

median solvers.

3. Development of two GA-Phylogeny algorithm: Ga_PMAG and Ga_Gasts. We

propose a new method to score and infer ancestor genome structure with a fixed

tree topology. to infer accurate ancestors with large distance whole-genome gene

order data in a specify tree structure. Our genetic algorithm is a cooperative

co-evolutionary method based on meta-population. By using good initialization

methods and sorting based crossover and mutation procedures, as well as careful

consideration of co-evolution, our GA-based method can reach relatively close

tree scores. In future, our approaches will be adopted to include other events

such as deletions, insertions and duplications.

10
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Chapter 2

Genetic Algorithm Median Problem Solver

2.1 Introduction

With the increasing availability of fully sequenced genomes, we are now able to con-

duct genomic evolution study beyond the mere sequence level. Rearrangement of gene

orders by operations such as reversal (also called inversion), transposition, fission, and

fusion are known to be an important evolutionary mechanism.

As these events are rare, they can be used to reconstruct evolutionary histories

that extend far back in time [46]. Other than reconstructing deep evolutionary his-

tories, another important application of genome rearrangement analysis is to infer

gene order within both ancestral and contemporary genomes. Such inference is valu-

able for identifying patterns of evolution and for modeling the evolutionary processes

(e.g. hot spots of rearrangement). As a result, genome rearrangement analysis has

attracted a lot of attentions from biologists, mathematicians, and computer scientists

[47, 48, 49] since the pioneering papers of Sankoff [50].

Handling rearrangement events directly is mathematically very difficult: it took

almost a decade to find the first polynomial algorithm that computes the reversal

distance (i.e. the minimum number of reversal operations to transform one genome

into another) [16], and it was just recently proved that the transposition distance is

NP hard. Yancopoulos et al. [51] proposed a simplified model that used the universal

double-cut-and-join (DCJ) operation to account for all rearrangement events, which

cuts a chromosome at two places and rejoins the four ends of the two cut places in a
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new way. Although there is no direct biological evidence for DCJ operations, these

operations are very attractive because it provides a simpler and unifying model for

genome rearrangement [52].

Main methods to infer ancestral gene orders are parsimony-based methods such

as GRAPPA [53] and MGR [54]. The core of MGR and GRAPPA is a set of algorithms

to solve the median problems of k genomes, which is to find an ancestral genome

that can minimize the sum of the pair wise distances between itself and each of the

k given genomes.

GA was widely used in solving many hard optimization problems, including those

in computational biology [55, 56, 57]. Since genome rearrangement deals with chro-

mosomes, evolutions and mutations, it will be natural to think that the approach

of genetic algorithm can be easily adopted into solving the DCJ median problem.

However, there are some major difficulties and the biggest problem is that the search

space is simply too large: given genomes with N genes, the possible number of gene

orders is 2NN !.

It poses serious questions on the major aspects of genetic algorithms:

• how should we generate the starting population?

• what is the best fitness score?

• and how to generate the next generation and pick the better one to survive?

There is a critical issue we need to consider when we adopt Genetic Algorithm:

the premature convergence. There are several approaches for handling the premature

issue:

• M. Srinivas, and L. M. Patnaik in 1994 proposed a paper called [58]" Adaptive

probabilities of crossover and mutation in Genetic algorithm". They used

pc = k1

(fmax − f−)
(2.1)

12
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pm = k2

(fmax − f−)
(2.2)

to automatically adjust the probabilities of crossover and mutation.

• YeeLeun proposed the method called Degree of Population Diversity. In this

paper [59], a concept of degree of population diversity was gave to quantitatively

characterize and theoretically analyze the problem of premature convergence in

genetic algorithms (GAs) within the frame work of Markov chain.

• J. Andre, in his paper [60], said " to fight the premature convergence of GA, we

emphasize at last two deciding alterations made to the algorithm: an adaptive

reduction of the definition interval of each variable and the use of a scale factor

in the calculation of the crossover probabilities."

In our problem, based on previous research results and empirical data of ourselves

and other papers, the solution space of median problem is convex or is not so complex

and irregular. So in our problem, I would like to use adaptive crossover and mutation

probability method to avoid premature issue. I already adopted this method into our

algorithm, and then I will do various experiments to analyze the results.

2.2 Motivation

TheDCJ median problem of three genomes is specifically defined as the problem to

find a median genome that minimizes the summation of distances measured by DCJ

operation between the given three genomes( Figure 2.1). It has been proven that

this problem is NP-hard even for three simple genomes. Because mathematically the

DCJ distance is much simpler than handling the events directly, parsimony methods

using DCJ median solvers outperform other methods in terms of speed and accuracy.

Among all existing exact solvers, the best is ASMedian proposed by Xu and Sankoff

[35], which uses the concept of Adequate Subgraph to decompose the problem into
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smaller, more easily solved subproblems, thus significantly it can reduce total com-

putation time. However it still runs very slowly with high gene rearrangement rate.

For datasets with N genes and r (expected) number of events per edge, when the

ratio of r/N is larger than 50%, all median solvers have great difficulty in finishing

the analysis within hundreds of giga bytes space or after months of computation [52].

D23D12

D13

C1

C2
C3

D3M

M

D1M

D2M

Figure 2.1 The DCJ Median Problem and Its Bounding Box.

All these facts motivated us to design a new algorithm that combines genetic

algorithm (GA) with genomic sorting which has the ability to solve the DCJ median

problem in limited time and space, especially in large and distant datasets.

2.3 Genetic Algorithm Median Solver with gene order data

The major difficulty of using Genetic Algorithm approach in searching a median is

that the search space is simply too large: given genomes with N genes, the possible

number of gene orders is 2NN !. It poses serious questions on the major aspects of

genetic algorithms:

• how should we generate the starting population?

• what is the best fitness score?
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• and how to generate the next generation and pick the better one to survive?

In this dissertation, we will present our sorting-based methods to explain and

solve these problems one by one.

Initial Population Generation

The initial population has deep impact on the performance of a GA-based method.

In the DCJ median problem, as the search space is very large, randomly pick some

genomes as start will not work as most likely these genomes will all be far away

from the desired median. Our approach is based on the following observation: given

three genomes, the median genome is likely to be on the path from one of the leaf

genomes to another. Although this does not readily give us a median solver as

the possible number of sorting paths are very large, it does suggest a strategy to

generate the initial population: for any given pair of known genomes Gi and Gj with

distance dij , we will find genomes that are on the sorting path from Gi to Gj and

are dij/10, 2dij/10, · · · , 6dij/10 steps away from Gi(Figure ??). Such genomes on

the sorting path can be easily generated using the DCJ sorting algorithm described

earlier.

Figure 2.2 The 6 Sorting Steps Along the Path From G1 to G2
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To obtain enough diversity, we generate 50 genomes per sampled step, resulting in

1, 800 genomes in the initial population (there are 6 pairs of genomes as the starting

genomes are different). As seen in the experimental results, this strategy is quite

effective and sometime only a few steps are required to converge onto very accurate

results.

Selection and Fitness Function

A critical parameter to be carefully tuned in GA is the selection pressure which is the

process of selecting the best individual(s) for the next generation, governed by the

fitness function [61]. In the DCJ median problem [62], an obvious choice is to use the

median score as the fitness function, and the one with a lower score will have better

fitness. In practice, we use the following fitness score: given N genes and the perfect

median score Sbest, if a genome G has median score S, its fitness score is defined as

FG = N − (S − Sbest) (2.3)

As the DCJ distance between any two genomes cannot exceed N , the above fitness

function guarantees that the one closer to the median will have better fit, and the

score is ranged between 0 and N .

In GA [63, 64], an important step is to select individuals into the candidate pool

who can produce offspring those having better fitness score should have higher chance

to get into the pool and pass its good genes to the next generation. There are some

classical mechanisms to select these individuals, based on different situations. For

example, in Roulette Wheel Selection, each individual has its probability of being

selected in the candidate pool as its fitness score divided by the sum of fitness scores

from all individuals. Truncation Selection selects the top 1/p individuals and each

will be copied p times into the pool.
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In the DCJ median problem, the range of the fitness function is very small ([0 , N ])

compared to the possible number of genomes ( 2NN !), thus many individuals will have

the same fitness score. This situation will get worse when the search approaches the

end where the best candidate may have a fitness score that is only a few numbers

away from the worst. Furthermore, two individuals with very different ordering of

genes may have the same fitness score, but the difference of orderings may result in

very different search patterns: some may quickly converge to a good solution as they

have genes better grouped while the others may not converge at all.

To overcome this problem, we adopt a hybrid approach of these traditional selec-

tion methods. We first select the top 10% individuals and reproduce them (without

change) into the next generation, as individuals with good genomic structure is hard

to find and we want to preserve that as long as possible.

We then put every individual in the remaining 90% into the candidate pool and

give them equal chance of being selected to produce offspring. To ensure better genes

are passed down, we devised the following crossover and mutation operations that

are based again on genomic sorting. Figure 2.3 gives an example of what’s scenarios

of each stage in one DCJ sorting sequence.

Crossover

Crossover is used for two selected individuals to exchange genetic material and pro-

duce offspring. In some genetic algorithms, this procedure can be as simple as ex-

change blocks of the encoding strings.

However, in the DCJ median problem, since each individual is represented as a

gene order and each gene should appear exactly once in one individual, such exchange

will result in invalid offspring. For example, if we exchange the last two genes of g1 =

1, 2, 3, 4, 5 and g2 = −2, 3, −5, −1, 4, the resulted offspring will be g1 = 1, 2, 3, −1, 4

and g2 = −2, 3, −5, 4, 5, both violate our requirements and are invalid. It is not an
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Figure 2.3 Adjacency graphs of each stage of one DCJ sorting sequence that
transforms (3 -1 -4 2 5) to (1 2 3 4 5).

easy task to convert them back into valid gene orders.

The method we choose for crossover is based on sorting genomes in DCJ. First, we

pick two parents (P1 and P2) from the candidate pool and compare their fitness score

F1 and F2. Assume P2 has better fitness score than P1, we will generate two child

genomes C1 and C2. C1 is generated by selecting a genome which is on the sorting

path from P1 to P2 (the better one) and is m (randomly chosen) steps away from P1.

In other words, the new child obtains genetic material from both parents by applying

DCJ operations on one parent, with respect to the one with better fitness. We do
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not generate C2 by sorting from the worse to the better, as from our experiments,

this can easily destroy the good group of genes and leads to bad solutions. Instead,

we generate C2 as the direct copy of P2 (which has better fitness), given the better

genome a higher chance to pass its good structures in the future generations.

Both children will then undergo the mutation procedure described below with the

expectation that better offspring may be found.

Mutation

Mutation is used to maintain genetic diversity from one generation of a population to

the next. Mutation happens randomly in an evolutionary history and can extend the

range of a search. Proper mutations are needed so that GA can avoid local minimal

by preventing the population from becoming too similar to each other.

In the DCJ median problem, an individual can be mutated by applying a random

number of DCJ operations to an individual. However, there are two questions to

answer: how many operations are required and which operations should we choose to

apply?

From Figure 2.4, one can estimate the distances from the median genome (M ′) to

the three given ones by the following simple calculations:

d1M ′ = d12 + d13 − d23

2
(2.4)

d2M ′ = d12 + d23 − d13

2
(2.5)

d3M ′ = d23 + d13 − d12

2
(2.6)

Although the actual distances may be different from these estimated values, the above

estimations are a good indicator that how close a genome is to the median. If one

genome has its three edge lengths too far way from these estimated lengths, this

genome is likely to be bad and should be mutated toward a better one.
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Figure 2.4 Estimate the difference between individual GM with true G′
M ancestor

using triangle inequality method

Our mutation procedure is based on the above observation. For a genome GM from

current population pool, we can compute its three edge lengths to the given genomes,

and find the one which has the largest difference of the obtained and estimate lengths.

That means we can estimate which one is more away from true ancestor (Figure 2.4).

We then sort G some m (randomly chosen) steps closer to that given genome.

We conduct the above procedure on the two child genomes (C1 and C2) obtained

from the crossover procedure discussed above (with parents P1 and P2). As a result,

we get two new genomes C ′
1 and C ′

2. We then choose the two best from the four

genomes (C1, C2, C ′
1 and C ′

2), thus maintain enough diversity and enhance the quality

of individuals in the next generation.

2.4 Results

We implemented our new GA-based method in C and conducted experiments to assess

its accuracy and speed. Simulation is the main approach to evaluate the quality of a

phylogeny method, as the evolutionary history is known. In this paper, we conducted

extensive simulations following widely used procedures. As ASMedian requires very
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large amount of memory when the genomes are distant, we used a shared-memory

computer with 256GB memory to run the experiments, thus extended the range of

problems that can be solved by ASMedian not normally achievable. Although the

shared-memory computer is used, each test is done on a single CPU with no parallelism.

Setup of Simulations

Because all existing median solvers have very good performance when genomes are

close but cannot finish for distant genomes, we divided our experiments into two parts:

those can be finished by the exact methods and those cannot. We only compared

our new GA method with Xu and Sankoff’s ASMedian solver, as it is the best for the

median problem.

In our experiments, the real gene order data is so hard to get and we don’t know

the true ancestors and topology in history, so in this research field we always use

simulation data. So we already know the correct solutions and can compare our

results with them.

We tested the methods on simulated datasets of three genomes with 200 genes for

each one. We generated trees with three leaves and one internal node, assigned the

identity permutation on the internal node and generated the three leaves by applying

rearrangement events along each edge respectively. The number of events on each

edge is controlled by a birth-death process which is viewed as a good model to fit

evolutionary trees. The datasets are grouped by the average edge lengths (r), which

are 20, to 200 events per edge in our experiments, with the r
N

rates from 0.1 to 1.0,

ranging from very easy to extremely difficult. For each r, we generated 10 datasets

and averaged the results.

The maximum number of iterations for our GA method was set at 500 but will stop

earlier if the perfect median score is met. The one genome with the lowest median

score will be reported as the result. In our experiments, this maximum number is
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large enough that all instances have their best genome appeared with fewer than 500

iterations.

Comparison with ASMedian

For r ≤ 60 ASMedian is generally very fast while our method is a bit slower. However,

the running time of ASMedian increases quickly with r ≥ 80 and requires more than

a day to finish, while our GA method requires no more than 30 minutes even for the

most difficult ones.

The top of Table 2.1 shows the results for the median scores obtained. For r ≤ 40,

ASMedian and our method achieve the same median scores that are very close to the

perfect median score. For r ≥ 40, although the average median scores of our GA

method are larger than those obtained by ASMedian, the difference is small and less

than 2% even for the most difficult cases. ASMedain cannot finish any dataset with

r ≥ 140, while our method can still reach genomes with reasonable median scores,

within 500 iterations and 30 minutes of computation.

For the unrooted tree defined by the three given genomes, the median genome can

be used to estimate the gene order of the internal node, which is the missing ancestor.

Thus the distance to the true ancestor (known in simulations) is an additional measure

of the quality of median solvers. The bottom of Table 1 shows the average breakpoint

distance to the ancestor for the two methods. It is very surprised to see that for

almost all datasets, the medians inferred by our GA method are indeed much closer

to the true ancestor compared to those inferred by the exact method ASMedian. This

suggests that the sorting-based mutation and crossover procedures are very effective

and preserve important genomic structures. Even for r = 200, the breakpoint distance

between the inferred and true ancestor is fewer than 55, comparable to those achieved

by ASMedian for a far smaller r (r = 120 in Table 2.2).
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Convergence

A question GA faces is whether it can converge [65]. Table 2.2 shows the average

and max number of generations needed to find the best solutions. It is not surprise

to see that with higher number of events, the search space becomes much bigger,

hence more generations are needed to have good genomes shown. It also can see

that although the maximum number of generations is set at 500 in our experiments,

the GA method can always find good genomes before 500 generations. The average

number of iterations is indeed much small than this upper limitation, thus a better

stop criteria may be desired to avoid this waste.

From the average fitness score Figure 3.5 of my experiments, we can see that

there is little premature issues here because there is no fluctuation in all lines and all

the average fitness scores decreased step by step. Besides that, by using simulation

data sets, we know the each correct answer, so we can get the difference between the

average score for each generation and the optimal score.

Figure 2.5 Average Fitness Score with Generation Number Increasing
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Table 2.1 (Top) Comparison of median scores. (Bottom) Comparison of the
breakpoint distance from the inferred median to the true ancestor. r is the averaged
number of events per edge. “-”indicates that a method cannot finish.

Comparison of the median scores:
r=20 r=40 r=60 r=80 r=100

Our GA Method 53.7 109.8 155.5 180.9 232.1
ASMedian 53.7 109.8 154.8 175.5 228

Perfect Score 53.6 109.4 152.2 173.4 210.6
r=120 r=140 r=160 r=180 r=200

Our GA Method 247.1 279.4 287.7 281.6 309.1
ASMedian 242.3 - - - -

Perfect Score 221.8 242.4 254.8 244.4 261.9

Comparison to the true ancestors:
r=20 r=40 r=60 r=80 r=100

Our GA Method 0.3 0.4 5.0 9.9 28
ASMedian 0.4 0.3 6.3 15.6 40.7

r=120 r=140 r=160 r=180 r=200
Our GA Method 32.7 44.9 49.2 57.5 54.9

ASMedian 50.5 - - - -

Table 2.2 Number of generations to find the best genome

r=20 r=40 r=60 r=80 r=100
Average 7.9 27.3 43 50.6 94.3

Max 21 104 108 110 201
r=120 r=140 r=160 r=180 r=200

Average 128.6 99.4 142.8 172.2 180.4
Max 290 151 303 337 496

2.5 Discussion and Conclusions

We propose a Genetic algorithm median solver using DCJ distance measurement.

Our GA-based method uses genomic sorting to generate initial population and find

offspring by crossover and mutation procedures. Using GA, we have the ability to

extend optimal median solution space with limited space and time, so it is not easy to

stack at local optimal, even when the three genomes are very distant. Our experiments

on simulated datasets shows that our GA method is very efficient and has better
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speed and accuracy compared to existing methods. It also confirms the importance

of sorting in solving the DCJ median problem, and our approaches can be adopted

to include other events such as deletions and insertions, for which linear algorithms

are available to compute the distance, to further improve the ancestral inference from

genome rearrangements. However, this paper is a first attempt to use the approach

of genetic algorithm in gene order analysis, it requires better strategies in selection

and crossover. As we generally deal with many more genomes, we need to develop

a genetic algorithm that can compute phylogenies and ancestors directly, without

solving the median problem at all.
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Chapter 3

Genetic Algorithm Median Solver with

Insertions and Deletions

3.1 Introduction

Insertions and deletions are important components of genome evolution and should

be considered in genome rearrangement algorithms. The double cut and join (DCJ)

is an universal rearrangement operation introduced by Yancopoulos et al. In 2005

[66], that allows to represent most large scale evolutionary events, such as inversions,

translocations, fusions and fissions occurred in genomes. If we want to measure

the DCJ distance between two genomes the situation is they must have equal gene

content, that means they must have exactly the same gene contents. The assumption

is not in accord with true organisms’ evolutionary history. Recently lots of work has

been done to modify equal DCJ distance measurement to allow insertion or deletion

events, or complex problems such as genome halving [67], genome liquating, and

sorting an unequal content genome to the identity genome [68].

In order to deal with unequal genomes, EI-Mabrouk citeel2000recovery first ad-

dressed the edit distance for insertions and deletions by extending the results of Han-

nenhalli and Pevzner. In 2008, Yancopoulos and Friedberg [69] proposed an extension

of the DCJ paradigm including operations performing insertions and deletions.

In 2010, Braga followed Yancopoulos’s work and proposed a linear time approach

to computer the DCJ-Indel distance between two genomes, in which the cost of an

insertion or deletion is the same as that of a DCJ, where several consecutive markers
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can be inserted or deleted in a single event [70, 71, 72].

Philip [73], in 2012, provided a simplified indel model which theoretically solve

the problem in linear time directly from breakpoint graph. However, the method is

not easy to realize and not practical for sorting.

3.2 Motivation

The methods for computing genomic distances and sorting operations between two

genomes with unequal gene contents have attracted lots of attentions recently. Al-

though median solvers and distance measurements with equal genomes are developed

thoroughly (such as breakpoint distance, reversal distance and DCJ distance), Me-

dian solver using DCJ-Indel idea has little progressed. GRAPPA can only handle limited

number of deletions with small gene rearrangement rate. And by now no other DCJ-

Indel median solver has been addressed. In Chapter 2, we have proved the excellent

performance of our genetic algorithm median solver (GaDCJ) in both accuracy and

scale aspects theoretically and experimentally. So we want to extend our algorithm to

handle deletions and insertions by using DCJ-Indel sorting algorithm. Our proposed

GaDCJ-Indel algorithm can handle not only complex indel scenarios, but also large

distance datasets in limited memory spaces and time.

3.3 Methods

In Chapter 2, I have in detail explained what kinds of algorithms we adopted and

why we used them in each step in our GaDCJ median solver. We will extend it to

handle unequal median genomes problem with insertions and deletions rearrangement

events. So we will not go through all of our DCJ-Indel model again. I will describe

what parts we need to modify in order to fit more complex situation with both DCJ

and indels operations.
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DCJ-Indel Model

Without loss generality, given a genome A = {a, e, x, c, d, y, b, z, w} and a genome

B = {a, b, c, d, e}, the two are unequal genomes. Based on the concept of adjacency

graph we introduced in Chapter 2, Figure 3.1 gives us an example of an adjacency

graph with two unequal genomes (A and B). In Bragas algorithm, an indel only

affects the label of one adjacency by deleting or inserting contiguous markers in this

label. That is when we sort A into B, the indel operations are executed by deleting

all the markers only in A and inserting all the markers only in B. No classical DCJ

operation is able to describe an insertion or a deletion event, so an operation in our

DCJ-Indel median model is either a DCJ, an insertion or a deletion.

Figure 3.1 A adjacency graph of two unequal genomes: A and B

Given l3 ̸= ϵ, deleting l3 from the adjacency r1l1l2l3r2 is represented as the oper-

ation

ρd = (r1l1l2|l3|r2 → r1l1l2|r2)

meanwhile inserting l3 is represented as the operation

ρi = (r1l1l2|r2 → r1l1l2|l3|r2)

where l3 stands for a substring of genomic materials in the operated genome and r1

and r2 are the telomeres or an extremity of a marker in the operated genome.
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The DCJ-indel distance of genome A and genome B, signed as dDCI_indel(A , B) ,

is described as the minimum number of steps of the sum of DCJ and indel operations

required to sort A into B or B into A (the two values are equal).

In Bragas paper, he proposed there were two different directions can realize DCJ-

indel sorting operation: one can minimize the number of DCJs and the other can

minimize the number of Indels. Figure 3.2 shows an example of these two different

sorting scenarios with unequal genomes. Within the same number of steps, the space

of solutions of these two directions contains scenarios with different components.

Figure 3.2 Two optimal scenarios if DCJ-Indel sorting: (i) Minimal DCJ
operations. (ii) Minimal Indel operations

Fitness Function

For equal genomes, we can adopt triangle inequality formula to get the lower bound

of their median score(Figure 2.1). So we can use the difference between current

individual’s median score with the lower bound score to adjust evolutionary direction.

d1M = d12 + d13 − d23

2
(3.1)

d2M = d12 + d23 − d13

2
(3.2)
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d3M = d23 + d13 − d12

2
(3.3)

However, given any three unequal genomes A, B, C without duplication markers,

there is no guarantee that the triangle inequality can still be held in this situa-

tion. Yancopoulos and Friedberg gave a simple example [74]. Giving three genomes:

A = a, b, c, d, e, B = a, c, d, b, e and C = a, e, the distance of ddcj_indel(A , B) = 3,

ddcj_indel(A , C) = 3 and ddcj_indel(B , C) = 1. We can see it doesn’t obey the triangle

inequality formula.

In Braga’s paper [74], they used a surcharge parameter k in DCJ-Indel distance to

solve this problem, denoted by surcharge-triangle inequality. The modified triangle

inequality is describe as

m(A , B) ≤ m(A , C) + m(B , C) (3.4)

The formulas to calculate m(A , B),m(A , C) and m(B , C) are defined as:

m(A , B) = ddcj_indel(A , B) + k(|G1| + |G2| + |G3| + |G4|) (3.5)

m(A , C) = ddcj_indel(A , C) + k(|G1| + |G5| + |G6| + |G4|) (3.6)

m(A , B) = ddcj_indel(A , B) + k(|G3| + |G5| + |G6| + |G2|) (3.7)

where the three genomes can be divided into 6 sets ( 3.3): G1 , G2 , G3 , G4 , G5 , G6.

G1 ∩ G2 is the set of gene orders that occur only in genome A but not in genome B

and G3 ∩ G4 is the set of gene orders that only occur in B not in A. Analogously,

we know the meaning of G1 ∩ G5, G6 ∩ G4, G3 ∩ G5 and G6 ∩ G2. In general, the

surcharge-triangle inequality holds if we take k = 3/2.

Based on the above description, in our GaDCJ-indel algorithm, the fitness func-

tion on longer use classic triangle inequality function but use the surcharge-triangle

inequality. However the k = 3/2 can not provide a tight lower bound in DCJ-Indel

median problem, we only use it in the first several generations. Generally we use this
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Figure 3.3 The 6 sets of GA, GB and GC

formula:

0.25 ∗ #genes ∗ diameter (3.8)

to correct evolutionary direction in the first several generations. After that, we de-

crease the number of k step by step until 1 to approach optimal solution(s).

Initialization for GaDCJ-Indel algorithm

In the initialization procedure, we will generate a population pool by sorting along

a path from one genome to the other. Because DCJ-Indel sorting has two differ-

ent directions (minimal DCJ or minimal Indel), in different sorting directions, the

structures of generated initial genomes would be various. In order to consider more

combinations and globally improve the accuracy of results, we modify the initial

method of GaDCJ median algorithm: we generate the initial population pool half by

minimal DCJ method and the other half by minimal Indel method. Actually, we can

tune the ratio of the two methods and to see which ratio is more suitable in which

situation.

31



www.manaraa.com

Another modified aspect is for unequal genomes sorting algorithm, we only sort

the two unequal genomes (GA and GB) to their common segment markers (GI) from

different starting points. So along the sorting path (Figure 3.4 gives a demonstration),

actually, we will have 12 different sorting steps with various genomes structures (

meanwhile, for equal genomes, we may have some overlapped sorting points along

the sorting path).

Based on the above reasons, in our DCJ-Indel median solver, we will enlarge the

number of initial population pool in order to fit the complex insertion and deletion

scenarios.

Figure 3.4 Sorting Two Unequal Genomes GA and GB to Their Common Segment
Markers (GI) From Different Starting Point

Crossover for GaDCJ-Indel algorithm

Based on our GaDCJ algorithm, the crossover method we adopt in DCJ-Indel model

is also based on sorting genomes. Instead of using only DCJ sorting, we use both

DCJ and Indel operations.

First, we pick two parents (P1 and P2) from the candidate pool and compare their

fitness score F1 and F2, assuming P2 has better fitness score than P1. Then we will

generate two children genomes C1 and C2 from the two parents. C1 is generated by

selecting a genome which is on the sorting path from P1 to P2 ( from less fit one to

the better one) and is m (randomly chosen) steps away from P1. Here we need to
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consider whether the value of m is larger then the total number of dcj operations or

not. To realize sorting procedure, we always do dcj sorting first. So if m is larger than

or equal to Ddcj, we will do the total number of DCJ sorting operations first and then

do the rest number of indel operations; otherwise, m dcj sorting operations are only

adopted. In other words, the new child obtains genetic material from both parents

by applying DCJ and indel operations on one parent P1, with respect to the one with

better fitness P2. We do not generate C2 by sorting from the worse to the better. As

from our experiments, this can easily destroy the good genetic structures and leads

to bad solutions. Instead, we generate C2 as the direct copy of P2 (which has better

fitness), given the better genome a higher chance to pass its good structures in next

generations.

Mutation for GaDCJ-Indel algorithm

In the DCJ-Indel median solver, an individual can be mutated by applying a random

number of DCJ and indel operations to sort to another individual. However, there

are two questions to be answered: how many operations are required and which

operations should we choose to apply?

Liking GaDCJ algorithm, we use sur-triangle inequality (explained above) to es-

timate the lower bound of median score. Although the actual distances may be

different from those estimated values, it is a good indicator that how close a genome

is to the true median. If one genome has its three edge lengths are too far away

from their estimated lengths, this genome is likely to be bad and should be mutated

toward a better one. For a genome G, we can compute its three edge lengths to the

given genomes, and find the one which has the largest length difference between the

generated and estimated one. We then sort G some random m steps closer to that

given genome. We should also compare the value of m with Ddcj to decide the ratio

of DCJ and Indel sorting operations.
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Besides that, we may use adaptive mutation ratio with time passed by. At first

several generations, the population has enough diversities, so it is not necessary to

put high mutation rate(0.1). Later, with the number of generation increasing, there

will be some domestic genomic structures, so we tune up the mutation rate to 0.2 in

order to explore more search space and avoid stack in local optima.

We conduct the above procedure on the two children genomes (C1 and C2) ob-

tained from the crossover procedure. As a result, we get two new genomes C ′
1 and

C ′
2. We then choose the two best from the four generated off-spring (C1, C2, C ′

1 and

C ′
2) in order to maintain enough diversities and enhance the quality of individuals in

the next generation.

Other Procedures

Based on the good performance of previous researches, we follow the same selection

methods and other algorithm details in each procedure described in Chapter 2.

3.4 Experiments Results and Discussions

Datasets

Although existing DCJ median solvers can solve equal genomes median problem ef-

ficiently, rare of them can handle insertion and deletion operations, what’s more no

one can solve distant unequal genomes. In our experiments, the real gene order data

is so hard to get and we don’t know the true ancestors and topology evolutionary in

history, so in this research field we always use simulation data. So we already know

the correct solutions and can compare our results with them. So we compare our

DCJ-Indel method results with the relative true median score and the true ancestor

which are generated by a simulator.

We tested our DCJ-Indel methods on simulation datasets of three genomes with
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200 gene orders for each one. We generated trees with three leaves and one internal

node, assigned the identity permutation on the internal node and generated the three

leaves by applying rearrangement events along each edge respectively. The number of

events on each edge is controlled by a birth-death process which is viewed as a good

model to fit evolutionary trees. We set the insertion and deletion event percentages:

one is 2% and the other is 4%. The datasets are grouped by the average edge lengths

(r), which are 50, to 200 events per edge in our experiments, with the r
N

rates of 0.5,

1.0, 1.5,2.0, ranging from easy to extremely difficult. For each r, we generated 10

datasets and averaged the results.

The maximum number of iterations for our GA method was set at 100 but will

stop earlier if the perfect median score is met. The one genome with the lowest

median score will be reported as the final result. In our experiments, this maximum

number is big enough that all instances have their best genome appeared within fewer

than 100 iterations.

Comparison with True Ancestor and True Median Score

Currently there is rarely available indel median problem solver, so we use simulation

datasets and compare our GaDCJ-Indel algorithm’s results (GM) with true ancestor

(GT ) and true median score summed by the DCJ distance between true ancestor to

each of the three given leaves.

Table 3.1 shows the average results for indel median scores, measured by DCJ-

Indel distance. The minimal different percentage is 0.62% and the largest one oc-

curred in the hardest datasets is only 7.5%. We can see that our GaDCJ-Indel

algorithm can achieve very close or even the same indel median scores in easy cases,

meanwhile for large distance datasets, our algorithm can still give reasonable indel

median scores.

For an unrooted tree defined by three given unequal genomes, the indel median
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genome can be used to estimate the gene order of the internal node, which we use

to infer the missing ancestor. Thus the distance to the true ancestor (known in sim-

ulations) is an additional measurement to verify the quality of indel median solvers.

Table 3.2 gives the average DCJ-Indel distance to the known authentic ancestor for

our methods. From the data, we can see that the median genomes inferred by our

GaDCJ-Indel method are indeed very close to their true ancestor and the fractions

between the differences with total relative evolutionary event numbers are very small.

The minimal one is 0.9% in the easier case and the largest one is 5.15%. Even for

r = 200, the DCJ-Indel distance between the inferred and true ancestor is still less

than 62 (10%).

We also test more distant and difficult datasets which have 4% insertion and

deletion events with diameter from r = 50 to r = 200. Table 3.3 and Table 3.4 show

the average results and averaged different percentages of these experimental results

to their true scores. It is surprised to see that they are almost as good as easy ones. It

indicates that our GaDCJ-Indel algorithm has very large computational scale, which

not only can handle small distance with little indel events datasets, also have good

performance on large and difficult datasets.

This suggests that the sorting-based mutation and crossover procedures are very

effective and preserve important genomic structures, so our indel median solver can

provide very close ancestor genomes from easy case to very harder one in both distance

and structural aspects.

Table 3.1 Comparison to the true median score with indel rate of 0.02

r=50 r=100 r=150 r=200
Our Average Score 121.4 221.2 280.2 303.2
True Average Score 119.4 222.6 295.8 327.8

Diff Percentage 1.67% 0.62% 5.27% 7.5%
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Table 3.2 Comparison to the true ancestors with indel rate of 0.02

r=50 r=100 r=150 r=200
dGT

− dGM
2.7 27.7 44.0 61.8

dGT
−dGM

3∗r
0.9% 4.61% 4.89% 5.15%

Table 3.3 Comparison to the true median score with indel rate of 0.04

r=50 r=100 r=150 r=200
Our Average Score 121.0 220.2 260.8 303.4
True Average Score 115.6 215.0 273.7 336.9

Diff Percentage 5.0% 2.42% 4.71% 9.94%

Table 3.4 Comparison to the true ancestors with indel rate of 0.04

r=50 r=100 r=150 r=200
dGT

− dGM
2.1 17.8 41.5 67.7

dGT
−dGM

3∗r
0.7% 2.97% 4.61% 5.64%

Convergence

Figure 3.5 Average Fitness Score with Generation Number Increasing

Let’s look at the above 3.5, we can see that our algorithm has little premature

issues and can converge to an optimal solution generation by generation. In future, we

37



www.manaraa.com

may test different terminate criteria in order to limit computational time consuming

and improve our algorithm efficiency.

Time and Space Performance

Based on experiments, the consuming time for our GaDcj-Indel algorithm is no exceed

20 minutes for each r = 200 datasets and for small event rate, our algorithm can finish

all data in less than several minutes. Lots of current equal genomes median solvers

use huge of memory spaces in order to store temporary information. Although they

may use less time for solving small datasets, they cannot finish anyone in distant

genomes. If following their methods in solving indel median problem, we will also

meet the short of storage problem. Our algorithm only needs little memory to record

each population, so it can easily handle large distant datasets.

3.5 Conclusion

We propose the first genetic algorithm based median solver with unequal content

genomes, but without duplications, taking into consideration of DCJ and indel op-

erations. By DCJ-Indel sorting operations, following the four steps of classic genetic

algorithm, we develop our GaDCJ-Indel algorithm. We use various dcj and indel

operation ratios to generate initial population pool with enough diversities. So we

can reach sufficient search space. Then we adopt dcj operation and indel operation

in crossover and mutation procedures. For testing our algorithm, we use two group

of datasets with different indel event rate. All experimental results indicate that our

GaDCJ-Indel algorithm has very large computational scale, which not only can han-

dle small distance with litter indel events datasets, also have good performance on

large and difficult datasets. Besides that, our algorithm only takes relative limited

memory space no matter what kind of data being used.
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Chapter 4

Reconstructing Ancestral Genomic Orders

Using Genetic Algorithm Model

4.1 Introduction

Phylogenetic analysis focuses on the study of evolutionary relationships among groups

of organisms (e.g. species, populations), based upon similarities and differences in

their physical and/or genetic characteristics [20, 19]. A phylogenetic tree or evo-

lutionary tree is often described as a binary tree: its leaves are the given set of

descendant organisms and internal nodes stand for extinct ancestors connected by

edges to indicate evolutionary relationships [75].

To date, phylogenetic reconstruction generally deals with two types of data: DNA

or protein sequences or gene orders. Although sequence data still dominate, gene

order was acknowledged early on as a valuable phylogenetic character [76, 77, 78, 79].

There are several tools for gene order analysis, most of those require the scoring

of trees and by comparing the scores, pick the best-scored one as the phylogeny.

In the scoring procedure, one by-product is the inference of ancestral genomes by

labeling internal nodes with gene orders. Over the past few years, ancestral gene-order

inference has brought profound predictions of protein functional shift and positive

selection [80].

Methods for scoring and inferring ancestral genomes assume a given tree topology

and assignment of genomes on leaf nodes, known as the small phylogeny problem

(SPP). There are currently two types of methods, maximum parsimony methods and
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maximum likelihood methods, which have various of limitations. For example, par-

simony methods rely on iteratively solving the median problems, which are NP hard

and very difficult to compute. Current methods are also easily stuck into local optima.

To avoid the problems of existing methods, in this paper, we present a cooperative

co-evolutionary genetic algorithm that provides a method that globally scores trees

and infers ancestors. Co-evolution is defined as the process of reciprocal evolutionary

change that occurs between species when they interact with each other. There are

two types: competition or cooperation [81, 82]. Cooperative co-evolutionary genetic

algorithm (CCGA) divides a problem into smaller sub-problems which are connected

by some links. Our method takes each internal node as one species, which has certain

degree of interactions with others depending on the connections between them. Our

CCGA algorithm uses fitness score designed to consider co-evolution and initializes

and evolves each population based on genomic sorting. Our extensive experiments

on simulated datasets show that compared with other methods, it not only can find

relative accurate tree scores, but also can infer ancestors that are much closer to true

ancestors.

4.2 Basic Notations and Preliminaries

Ancestral Genome Inference

Maximum parsimony methods typically iterate over each internal node to solve for the

median genomes until the sum of rearrangement events over all edges is minimized,

which is reported as the tree score. The median problem can be formalized as follows:

given a set of 3 genomes with permutations {Gi}1≤i≤m and a distance measurement

d, find another permutation Gm such that the median score defined as ∑3
i=1 d(Gi, Gt)

is minimized, which is NP-hard for most distance measurements [83].

One of the best parsimony method is GASTS [84]. As shown in Figure 4.1, each
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internal node initialization can define as a median problem. GASTS uses generalized

weighted adequate sub-graphs to initial each internal node, however the method do

not have an optimality guarantee: they form the basis for heuristic assignment of the

median in the initialization phase [84]. Although it speeds up the difficult median

computation, the above procedure captures optimal substructures and can be easily

trapped into local optima.

The most recent maximum likelihood method is PMAG [85], which encodes gene

orders into binary sequences and finds ancestral genomes based on a probabilistic

framework. As it avoids the expensive bottleneck of median computation, it is fast

and has better performance when genomes are distant. When PMAG computes the

ancestor on an internal node, it first re-roots the tree to make it the root, then

finds the probability of each adjacency. As a result, each internal node is considered

independently and does not consider results from other internal nodes, thus may also

be trapped in local optima.

Since existing methods have various problems on scoring and inferring ancestors,

a global method is always desirable, which is the main motivation of our genetic

algorithm method.

Genetic Algorithm in Phylogenetic Inference

Genetic Algorithms (GA) [86, 87] are inspired by evolution and governed by Darwins

theory of natural selection: the fittest one will have the higher chance to survive.

With the evolution progresses, “good” gene segments will propagate throughout the

population and two good parents will have higher chance to produce better offspring

than bad parents. As a result, each successive generation will become better adapted

to their living environment. A genetic algorithm will iterate until a solution is found

or the maximum number of iterations is reached.

Genetic algorithms are widely used in solving hard optimization problems, includ-
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ing those in computational biology [87, 88]. Although genome rearrangement deals

with chromosomes, evolutions and mutations, setting up a proper GA method is not

trivial and the first GA-based median solver was not available until last year [89]. This

GA-based median solver relies on sorting, i.e. when two individuals (genomes) are

picked to produce offspring, it will sort the bad genome some steps toward the good

one, thus creating offspring with genomic structures of the good genome. Simulation

results showed that this median solver is very accurate and finds median genomes

that are closer to true ancestors, compared with the best exact DCJ solvers.

Extending the median solver to globally score a tree and infer ancestral genomes

is not trivial as a tree essentially defines an ecosystem with populations on internal

nodes that interact with each other. To cope with this restriction, our new method

is a cooperative co-evolutionary genetic algorithm. Given a tree with fixed topology

and its leave genomes, we can treat each internal node as a species (with a population

of individual genomes). As there are multiple internal nodes, changing genomes on

one node will impact its neighboring nodes (Figure 4.1). Our method should proceed

with the goal to make the whole ecological system (i.e. all internal nodes of the

given tree) best fit. To achieve this, we use the following procedures to initialize the

populations and select best fit individuals to reproduce, which is based on a carefully

designed fitness function and sorting-based crossover and mutation procedures.

K

e 1

e 3

e 2

A

B

C

Figure 4.1 An example of tree topology around internal node K, nodes A and C
are also internal, while B is a leaf which has its genome defined by the input.
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4.3 Motivation

Co-evolution is defined as the process of reciprocal evolutionary change that occurs

between species when they interact with each other. Mainly, there are two types of it:

competition or cooperation [81, 82]. Cooperative co-evolutionary genetic algorithm

( CCGA) divides a problem into smaller sub-problems which are connected by some

links. After doing some exploration in GA-based phylogenetic solver, we propose a

CCGA-Tree algorithm. We can take each internal node as one species, which has a

certain degree of interaction with others depending on the genetic distances between

them.

Although current phylogenetic reference solvers, like GRAPPA and GASTS using

branch-and-bound as well as heuristic search methods to get fast and accurate an-

cestor genomes, have good performances on small datasets. However it restricts

the solution search spaces and diversities, especially when giving long distant leave

genomes data sets. Besides that, they all use distance matrixes to record medial

step results and iteratively update those medial results. With increasing the number

of leaves and their gene order numbers, the temporal storage spaces it needs grow

quickly and exponentially. It limits current solvers’ computational capacity.

Wanting to improve the above limitations, we propose our CCGA algorithm. Our

DCJ-Median algorithm (using DCJ distance method has several advantages:

1. can explore wider solution spaces and provide more accurate ancestor genomes;

2. just needs relatively small and stable storage spaces for initial population pool

instead of huge temporal space for medial matrixes;

3. uses the idea of cooperative co-evolutionary and meta-population method in

order to jump out local optimal issue and extend solutions searching space for

ancestor inference.
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4.4 Methods of GA-based Ancestor Inference

Distance Definitions

Given a tree, if we know its topology and internal genomes, we can estimate the length

of an edge by computing the distance using the corresponding two end genomes.

However, since we do not know internal genomes in real data analysis, we use the

linear programming method developed by Tang and Moret, which is fast to compute

and provides a good approximation of each edge length of any given tree [90]. For

an edge with two end nodes A and B, we call its edge length obtained by this linear

programming method the expected edge length dexp(A, B).

If the labeling (assignment) of genomes on two nodes A and B are known, e.g.

genome GA is assigned to node A and GB is assigned to B, we can define the distance

between these two genomes d(GA, GB) to be their DCJ distance.

Since in our algorithm, each internal node is a species which has its own pop-

ulation, thus we must consider cooperative co-evolution between species and reflect

this in our distance definition. Assume the ith individual of an internal node K has

gene order Gi
K , and node K is connected to another internal node A (Fig. 4.1), the

distance between genome Gi
K and node A must be defined as a distance between an

individual and a population. As we can compute the DCJ distance between Gi
K and

every individual in A, the simplest is of course to use the smallest DCJ distance or

to use the average of all these distances. The former gives too many influences of

one individual, while the later takes into account some bad individuals, thus both

can not guarantee to keep the best genomic structures. In our algorithm, we use the

smallest 50% distance between Gi
K and individuals in A’s population, and average

their distances as davg(A, Gi
K). If a node is leaf, as its genome is known and unique,

davg is simply the DCJ distance between the individual and the assigned leaf genome.

For example, in Fig. 4.1, node B is a leaf, thus davg(B, Gi
K) = d(GB, Gi

K).
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Initializing Populations on Internal Nodes

Since genetic algorithms are based on the evolution of a population, the distribution

and choices of initial population have huge influences on the search space impacts its

efficiency and effectiveness. Indeed, from our experience, how to identify a proper

initial population is the most important problem here. After several experiments and

comparisons, we decide to use the following approach (Fig. 4.1):

1. As there are several methods (such as GASTS [84] and PMAG [85]) that can

provide a solution to ancestral genomes, we will borrow their solutions as seeds

to populate every internal node;

2. For each internal node K and its seed genome, we then start to generate

its population. There are three neighboring nodes (A, B, C) known from the

given tree topology, each with its own assigned (seed or leaf) genome. For

example in Fig. 4.1, GA, GC use seed genomes while GB is a leaf genome

determined by the input. If A is the parent node, evolving from species A

to B will pass through K, thus we can assume K is on the sorting path

from GA to GB. Based on this observation, we can generate some candidate

genomes for internal node K by sorting along the path from GA to GB with
1
10d(GA, GB), 2

10d(GA, GB), · · · , 6
10d(GA, GB) steps away from the starting point

GA. By switching the starting and end points, each pair of the three neighbor-

ing nodes can generate 12 different genomes, giving 36 different initial genomes

for node K.

3. To get more representative population, we need to repeat the above procedure

N times and get an initial population pool for node K with 36 × N various

genomes.

The repetition number of N is obviously influenced by the number of genes and

the distances among genomes. In our prior GA-based median solver, we set N to be
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a constant (50), which is too large for closed genomes, but too small when genomes

are distant. Given a tree, we can define its diameter as the longest path between

two leaves. As larger diameter generally indicates that genomes are more distant, we

need larger populations to cover the huge search space. In this paper, we use the

following setting: N = diameter
10 . Since d is unknown, we can estimate it based on the

seed and leaf genomes, as its exact value is not that critical.

Computing Individual’s Fitness Function

In GA algorithms, the expression of fitness function depends on the optimization

goals. To score and infer ancestors, we want to find ancestral genomes that are close

to the true ancestors; as these true ancestors are unknown in real analysis, we want

to find those that minimize the evolutionary events. The later requirement can be

considered to find genomes that minimize the summation of all edge lengths (i.e. tree

score), while the former is a bit difficult to judge. Given the true tree T with true

ancestors, and an inferred tree T ′ with the same topology but different genomes, we

can compare the two trees by examining edge lengths: if T ′ has the same genomes

as T , these two trees should have the same edge lengths. In other words, if T ′ has

edges that with skewed lengths, the inferred ancestors may be far away from true

ancestors. With this observation, for each internal node K, we can define the fitness

score for its ith individual (Gi
K) as the following (Fig. 4.1):

F =
3∑

j=1
abs(e′

j − ej) +
3∑

j=1
e′

j (4.1)

where e′
j is the average length of the jth edge (j = 1, 2, 3) between Gi

K and its

neighboring nodes, ej is the expected length of the jth edge in the true tree. In

Fig. 4.1, e′
1 = davg(A, Gi

K), e′
2 = davg(B, Gi

K) and e′
3 = davg(C, Gi

K), while e1 =

dexp(A, K), e2 = dexp(B, K) and e3 = dexp(C, K).

The first term is actually very important as we not only want to find trees with
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minimum scores, we also want to maintain the tree shape and avoid edges being

skewed.

Selection

The above fitness function indicates that for a given internal node (and its species),

the one with smaller score makes the whole ecology system better fit. Thus it should

be given a higher chance to pass its good genomic structure into the next generation.

Following our experimental results and previous researches, we adopt a widely used

hybrid approach of some traditional selection methods. For each internal node and

its species, the population size will be kept the same from generation to generation.

At each generation, we keep its top 10% individuals and copy them (without change)

into the next generation in order to pass their good structures. We then randomly

select two individuals from the remaining 90% population to produce two offspring

(using methods discussed next); this procedure is repeated until the population limit

is reached.

Crossover

After two individuals are selected, we will use crossover to exchange their genetic

materials and produce offspring. As we are dealing with gene orders, we can not just

adopt the simple two points exchange as done by most genetic algorithms. Similar

to our GA-based median solver, the crossover procedure is based on genomic sorting.

For two parents (P1 and P2), we compute their fitness scores which reflect their

relationship with other species. Assume P1 has a lower (better) fitness score, we

produce the first child C1 by copying P1, given the better genome a higher chance

to survive. We then produce the other child C2 by selecting a genome on the DCJ

sorting path from P2 to P1 (from the worse score one to the better one) with m

(randomly chosen) steps away from P2. In other words, the new child C2 has both
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parents’ genetic material by applying DCJ operations, with the better fit one to have

higher chance to decide their child’s evolutionary directions.

Mutation

Mutation happens randomly to provide diversity, which is useful to avoid local op-

timal by preventing the population from converging rapidly and evolving to similar

genomic structures. Here we still apply DCJ sorting operations to realize the muta-

tion procedure.

With the probability threshold of 0.2, we randomly select one individual Gi
K in

internal node K’s current population pool to mutate it by applying some DCJ sorting

operations. If Gi
K is far from the true, its average edge lengths may also be very

different from the expected edge lengths, thus we want to correct the most skewed

edge by sorting Gi
K towards the neighboring node corresponding to that skewed edge,

using the following steps (Fig. 4.1):

1. By using the linear programming method, we know the expected three edge

lengths dexp(A, K), dexp(B, K), dexp(C, K) of the true internal node K to its

three neighbors A, B and C.

2. As we also need to consider cooperation evolution conditions, we will get the av-

erage distances between Gi
K and its three neighbors (i.e. davg(A, Gi

K), davg(B, Gi
K),

and davg(C, Gi
K)), using only the closet 50% individuals from each of the three

neighbors as we mentioned before.

3. We then identify which neighbor has the largest absolute difference between the

expected and average edge lengths, and sort Gi
K along that edge to get a new

genome, using number of steps determined randomly.

The crossover and mutation algorithms described above not only consider the evolu-

tionary pressure between related species, but also ensure that individuals with better
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fit in the ecology system have a better chance to preserve its genomic structure by

DCJ sorting.

Iterating through Generations

In our CCGA algorithm, as we are dealing with meta-populations, we need to evolve

each internal population, and propagate this evolution through its neighboring nodes.

For each generation of the ecosystem, starting from internal nodes closest to leaves and

moving inward, we allow the population of each internal node to evolve I1 generations,

using its last generation to cooperate with other nodes. Once we finish a generation of

the whole ecosystem, we restart the above procedure until I2 generations are reached.

In other words, there are two iterations: I1 lets each species to evolve separately,

while I2 keeps the “whole ecological system” to evolve and update.

Based on our experimental results, also considering running speed and efficiency,

the maximal numbers of both I1 and I2 only need to be set at 20 to reach convergence

and obtain satisfactory results (see the next section). Once the program stops, it will

scan each internal node and report the one with the best fitness score (using our

predefined fitness function) as the ancestral genome for that internal node; it then

computes each edge’s DCJ distance, using genomes assigned to its two end nodes;

the final tree score is then simply the summation of all edges’ DCJ distances.

4.2 gives us a clear interpretation for the whole algorithm procedures.

4.5 Experimental Results and Discussions

We used C++ to implement our CCGA method and conducted various experiments on

simulated datasets to assess its accuracy. Simulation is the main approach to evaluate

the quality of a phylogeny method, as its evolutionary history is known. We used

GASTS and PMAG to provide the initial population for CCGA, and compared it with these

two methods directly. As GASTS requires very large amount of storage space when
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Figure 4.2 A flow chart of CCGA algorithm

the genomes are distant, we used a shared-memory computer with 256GB memory

and 1T hard disk space to run the experiments.

We utilized the simulator proposed by Lin et al. [91] to produce birth-death tree

topologies. With a model tree, we can produce genomes of any size and difficulty

by simply adjusting three main parameters: the number of genomes N , the number

of genes n, and the tree diameter. In this paper, we used N = 10, 20 and n =

100, 200, 1000, 2000. We also used 4 different evolutionary diameters which are 0.5n,

1.0n, 1.5n and 2.0n, representing data from easy to extremely difficult. For each

combination of parameters, we generated 10 datasets and gave the averaged final

results.

From table 4.1, we can see that for each datasets (with small diameters), GASTS

gives tree scores that are very close or even exactly the same as true tree scores,
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Table 4.1 Differences of Tree Scores Compared with True Trees

n=100
diameter 0.5n 1n 1.5n 2n

CCGA_PMAG 1.2 12.2 18.4 50.7
PMAG 10.4 19.8 24.6 54.8

CCGA_GASTS 1.0 10.8 16.4 48.2
GASTS 0.4 10 16.2 50.4

n=1000
diameter 0.5n 1n 1.5n 2n

CCGA_PMAG 32.2 57.3 79.6 177.5
PMAG 33.6 76.2 124.2 180.2

CCGA_GASTS 29.8 37.0 59.2 179.2
GASTS 29.0 32.0 59.0 259.3

(a) Results from datasets with N = 10 leaves. CCGA_PMAG and CCGA_GASTS
use PMAG and GASTS to initialize internal nodes respectively.

n=100
diameter 0.5n 1n 1.5n 2n

CCGA_PMAG 2.2 3.2 16.6 42.5
PMAG 20.4 22.8 37.8 43.0

CCGA_GASTS 0.7 2.8 4.8 43.0
GASTS 0.4 2.8 4.8 49.3

n=1000
diameter 0.5n 1n 1.5n 2n

CCGA_PMAG 6.2 14.6 108.1 122.8
PMAG 34.2 50.4 126.6 122.8

CCGA_GASTS 3.0 7.0 100.2 124.2
GASTS 3.0 6.8 110.3 125.5

(b) Results from datasets with N = 20 leaves. CCGA_PMAG and CCGA_GASTS
use PMAG and GASTS to initialize internal nodes respectively.

while our CCGA method using either GASTS or PMAG as initialization method also

can provide very close tree scores. For datasets with larger parameters, our CCGA

method almost always improves upon the initialization results, achieving better tree

scores than the other two methods.

For each internal node, the distance between the inferred and ancestral genomes

is an additional measurement for the quality of our method. Table 4.2 shows the

average DCJ distances between the inferred and ancestral genomes, summed over
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Table 4.2 DCJ Differences from Inferred Genomes to True Ancestors
n=100

diameter 0.5n 1n 1.5n 2n
CCGA_PMAG 0.6 10.2 16.8 42.8

PMAG 3.4 13.2 17.2 48.4
CCGA_GASTS 0.4 9.6 18.2 41.6

GASTS 0.4 9.8 21.4 47.6
n=1000

diameter 0.5n 1n 1.5n 2n
CCGA_PMAG 20.2 36.8 66.2 144.2

PMAG 20.0 69.2 183 166.6
CCGA_GASTS 20.0 32.6 49.6 168.2

GASTS 22.4 28.4 51.8 378.6
(a) Results from datasets with N = 10 leaves.

n=100
diameter 0.5n 1n 1.5n 2n

CCGA_PMAG 2.4 3.4 9.3 29.7
PMAG 2.8 6.4 18.2 32.0

CCGA_GASTS 0.4 3.2 7.6 33.2
GASTS 0.4 3.0 7.6 39.5

n=1000
diameter 0.5n 1n 1.5n 2n

CCGA_PMAG 4.8 6.5 113 128.2
PMAG 15.2 46.6 111.6 137.6

CCGA_GASTS 2.4 2.4 120.8 137.8
GASTS 2.2 2.4 128.6 139.6

(b) Results from datasets with N = 20 leaves.

every internal node. It is very surprised to see that for almost all datasets, no matter

if they are difficult or easy, internal nodes inferred by our CCGA method are indeed

much closer or even equal to the true ancestors compared to those inferred by GASTS

and PMAG. This suggests that the sorting-based mutation and crossover procedures

are very effective and preserve important genomic structures.

From Tables 4.1 and 4.2, we can also see that although we used different initial-

ization methods, their final average results are very close. It indicates that when by

using suitable initial seed methods, no matter which one is used, our GA-based phy-
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logenetic inference algorithm will provide good results. The slight differences also tell

us that GA based algorithm is indeed a population-based algorithm, which perfor-

mance is impacted by its number of population and how to initial its population. In

the future, we will explore more initial seed methods to further improve our method.

GASTS is an efficient heuristic phylogenetic tool which itself relies on initially

labeled internal nodes. In GASTS, for an internal node to be initialized, two of its

three neighbors must be already initialized or known (such as leaves). The third node,

while typically not be initialized yet, GASTS wants to gather as much information

as possible, so it summarizes the data available in the third subtree into a set of

weighted adjacencies. Thus the information it uses to initialize a node consists of

two 0-1 sets of adjacencies from the two initialized neighbors and one weighted set of

adjacencies from the third neighbor. The weight wx for each adjacency x is given by

4.6 Conclusions

We propose a new method to score and infer ancestor genome structure with a fixed

tree topology. Median-based approaches are widely used to solve phylogenetic recon-

struction and ancestral inference problems and provide good performance for small

and closely related genomes. However, using these methods is computationally very

expensive and can easily get stuck in local optima, thus it is not suitable for real

genomes which are larger and more complex. Our genetic algorithm is a cooperative

co-evolutionary method based on meta-population. From our experimental results,

we find that by using good initialization methods and sorting based crossover and

mutation procedures, as well as careful consideration of co-evolution, our GA-based

method not only converges to relatively small tree scores, but also provides good

estimation of ancestral genomes. It also confirms the importance of sorting in solving

the ancestral inference problem, and our approaches can be adopted to include other

events such as deletions, insertions and duplications, for which new efficient sorting
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algorithms are available, enabling us to avoid the difficult quest of finding median

solvers. However, this paper is our first attempt to use the approach of cooperative

co-evolutionary algorithm in gene order analysis, thus lots can be improved to make it

more efficient and accurate by finding better initialization, selection and reproduction

procedures.
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Chapter 5

Conclusions

Our work focuses on using genetic algorithm (GA) framework to solve median prob-

lem and infer phylogenetic ancestor genomes and develop the first genetic algorithm

median solver and phylogenetic inference tool.

For median problem, We propose a genetic algorithm median solver using DCJ

distance and sorting methods. It is the first attempt to use the approach of genetic

algorithm in gene order analysis. In the frame of classic genetic algorithm, in order to

fulfill different demands, we develop our own algorithms for each procedure adopting

DCJ sorting operations in order to generate initial population and pass "good" genetic

materials by crossover and mutation procedures. Our algorithm has the ability to

extend optimal median solution space in limited space and time, so it is not easy to

stack at local optimal, especially in large scale and distant datasets. Our experiments

on simulated datasets shows that our GA method is very efficient and has better speed

and accuracy compared to existing methods such as GRAPPA and AsMedian. The

excellent performance of our algorithm indicate that sorting operation is very useful

in solving DCJ median problem. Besides that, our approaches can be adopted to

include other events such as deletions and insertions, for which linear algorithms are

available to compute the distance.

For more complex situation, we develop the first unequal genomes median solver

using genetic algorithm, but without duplications, taking into consideration of DCJ

and indel operations. In the frame of classic genetic algorithm, we use various DCJ

and indel operation ratios to generate initial population pool with enough diversities.
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So we can reach enough search space and avoid stack into local optima. We also adopt

DCJ operation and indel operation into crossover and mutation procedures. Two

groups of datasets with different indel event rate are used to verify the performance of

our GaDCJ-Indel algorithm. All experimental results indicate that our GaDCJ-Indel

algorithm not only can handle small distance datasets with little indel events, but

also has good performance on large and difficult datasets. Besides that, our algorithm

only take relative limited memory space no matter what kind of data being used and

has very large computational scale.

For phylogeny inference aspect, we first attempt to use the approach of cooperative

co-evolutionary algorithm in gene order analysis. We proposed a GA-Tree algorithm

which adapts meta-population, co-evolution and repopulation pool methods with a

fixed tree topology. Currently median-based approaches are widely used to solve

phylogenetic reconstruction and ancestral inference problems for small and closely

related genomes. However, these methods are very time consuming and can easily

get stuck into local optima, thus it is not suitable for real genomes which are usually

larger and more complex then we generally assumed. Our genetic algorithm, based on

previous researches which are using sorting based crossover and mutation procedures,

explored a new way to solve this problem. From our experimental results, by using

good and reasonable initialization methods, as well as careful consideration of co-

evolution, our GA-based method not only converges to relatively small tree scores,

but also provides good estimation of ancestral genomes. It also confirms one of

our previous conclusions: the important role of sorting, and our approaches can be

adopted into other events such as deletions, insertions and duplications, enabling us

to avoid the difficult question of finding median solvers. This is a exploration in

phylogenetic area, thus in future lots can be improved to make it more efficient and

accurate by finding better initialization, selection and reproduction procedures.
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